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ABSTRACT 

We discuss the properties of a discrete least squares method for the solution of the 
SchrSdinger equation, including in particular its convergence properties as the number 
of points in the mesh used and the number of terms in the trial function are each in- 
creased. The method provides a possible alternative to the usual Rayleigh-Ritz proce- 
dure especially when the matrix elements in this latter scheme have to be evaluated 
numerically; we therefore compare these two methods in the context of a simple nuclear 
three-body problem. We conclude that the least squares method forms a useful adjunct 
to the Rayleigh-Ritz procedure, and provides in particular a useful estimate of its 
numerical accuracy. 

I. INTRODUCTION 

A great many variational calculations have been undertaken to give approximate 
solutions of the Schrijdinger equation for few body systems. For trial wavefunctions 
and potentials of more than the slightest complexity the appropriate integrals must 
be evaluated numerically. This is so, for instance, in variational calculations on 
the nuclear three-body problem with realistic local two nucleon potentials (ref. [l]). 
Moreover for a good eigenvalue estimate, it is well known that the integrals must 
be computed with high accuracy, especially where linear variational parameters 
are employed (ref. [2]). It is therefore of interest to investigate alternative numerical 
methods which offer economy of computation. 

In this paper we investigate a least squares method which does not require the 
evaluation of any integrals. This is a modification of the method used by Frost 
et al. [3] in atomic few body calculations. 

In Section II we formulate the equations and discuss the expected convergence 
properties of the method. In Section III we present numerical examples for the 
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case of a simple nuclear three body system with central local potentials with and 
without hard cores, and compare the results with variational estimates. In both 
the variational and least squares methods the factors governing the estimates are 
the number of variable parameters in the trial function, and the number of mesh 
points used. 

We investigate in detail the dependence of the results on these factors. 
We conclude with a discussion of the apparent merits of the technique. 

II. FORMULATION 

There are a number of different (and non-equivalent) formulations of the least 
squares method (ref. [3], [4]). We discuss here only one variant which we first 
derive. 

We wish to solve the SchrSdinger equation 

(H - E)# = 0 
Consider the functional 

where the sum is taken over the discrete point set rs in the coordinate space involved, 
and w(r,) is a suitable weighting function to be discussed below. This expression 
is positive definite, and vanishes only when LX, $ satisfy (1) over the point set. 

We take #(r) to be a trial function and consider the minimisation of E with 
respect to m and simultaneously with respect to parameters in $. These parameters 
must be subject to a suitable normalisation condition to keep # finite. 

In this paper we consider the case of linear parameters: 

W = $ wL(r) 

and impose the normalisation condition a, 2 = 1 .l With this trial function (assumed 
real) 

= aT(H2 - 2aH + oiLS)a (4) 

1 The solutions found do not depend, apart from a multiplicative constant, on the normalisation 
condition chosen provided that in the exact wavefunction aI # 0. 



DISCRETE LEAST SQUARES 455 

where we have used matrix notation with 

The restriction aI = 1 can be written 

aTPa = 1 

where P is the matrix 

(5) 

(6) 

We introduce the Lagrange multiplier h and minimise 

E - X(aTPa - 1) 

Differentiating with respect to 01, aT yields the equations 

aTHa 
a=x (7) 

(H2-2201H+o12S)a-APa=O (8) 

These are a set of simultaneous linear equations in a coupled to an equation for CX, 
which may be solved iteratively on a computer. 

Convergence 

The variance E of equation (3) may be made as small as we please by including 
sufficient terms in the trial function, for a fixed point set {r9}, and hence we can 
always find a solution to the original equation over the point set. But if the net 
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used is too sparse, we will not expect this solution to be a good approximation to 
the solution over the whole space r. We are therefore interested in the relationship 
between convergence in {r,) and {r}; it is difficult to give such a discussion in general, 
but in Appendix A we analyse in detail the one-dimensional problem. We give there 
a discussion of the conditions under which the least squares procedure leads to a 
solution of the Schriidinger equation. The results may be stated as follows. 

Suppose the number of terms N in the trial function Y is increased. If at the 
same time the number of points P is increased sufficiently fast, and if convergence 
is observed in the energy estimates 01, then these values will have converged to a 
solution of the Schrodinger equation. 

We have yet to specify “sufficiently fast”, and this must be determined by detailed 
reference to the physical problem under consideration; an explicit criterion is given 
for one-dimensional problems in Appendix A. Note that if the number of terms 
N is increased for a fixed number of mesh points P, a situation will arise where we 
are trying to fit the wavefunction at a number of points with more free parameters 
than constraints. It is therefore to be expected that the Least Squares (L.S.) 
estimates will break down as N is increased for given P. Appendix A shows that 
the onset of this instability occurs earlier for a wavefunction with large second 
derivatives. 

In the numerical examples of this paper, we demonstrate this expected conver- 
gence behaviour with respect to both N and P. 

Choice of Points and Weights 

Within wide limits, Appendix A shows that we may expect convergence for an 
almost arbitrary choice of weights and points. In this paper we choose these so that 
the sums approach the integrals over the space as the number of points increases. 
With this choice of points and weights the L.S. estimate of the energy, eqn. (7), is 
identical in form to the expression for the variational upper bound given by the 
Rayleigh-Ritz (R-R.) procedure. However, the equations determining the linear 
parameters a differ. If the integrals are evaluated exactly the L.S. estimate therefore 
provides not only a variational estimate of a, but even a R.R. bound. In general, 
the integration rule leading to the chosen points and weights will not give exact 
estimates of the matrices S and H. However, provided the matrix S has nonnegative 
eigenvalues the R.R. vector a minimises expression (7) and therefore the R.R. 
estimate of the energy is lower than the L.S. estimate. One is therefore tempted to 
conclude that the least squares procedure is actually inferior to the R.R. procedure. 
However, this assumes that the integrals are exact and in practice of course this 
will not be true, so that the R.R. estimate may fall below the exact solution. In 
the examples which follow we discuss the behaviour of the two estimates as both 
the number of linear parameters and the number of quadrature points increase. 
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III. NUMERICAL EXAMPLES 

In this section we present the results of calculations on the binding energy of a 
simple triton model with spin and charge independent central forces. Two inter- 
nucleon potentials are utilized, one containing a hard core, and one not. 

For various choices of N and P, the matrices Ha, H and S were computed, and 
the L.S. and R.R. estimates derived. We demonstrate the convergence of the L.S. 
estimates, and compare them with the variational estimates. 

Potentials 

We first specify the interparticle potentials used. 

Potential A. Attractive Yukawa well-no hard core 

V(r) = - V,e+@/(r//3) 

with 

V,, = 49.7616 Mev j3 = 1.50 F ?i2/m = 41.468 Mev F2 

Potential B (Ref. [5]). 

V(r) = _ ~08e-&(~-%) _ ~ote-Bt(+-d r > rc 

=CO r < r0 

V,,, = 235.414 Mev /I, = 2.03435F-1 

V,, = 475.044 Mev fit = 2.5214F-l r, = 0.4F 

Trial Functions 

For each case the set of trial wavefunctions was of the form 

4d = X&i) dr2) ~(r2N (9) 

where S indicates that a sum symmetric in r1r2r3 is formed from the quantities in 
parenthesis, and I, m, n, are integers chosen as in Table I. rlr2rB are the interparticle 
distances. 

For the potential A the one dimensional function employed was of the form 

ul(r) = e--OrzT (10) 

and for the potential B 

ul(r) = [l _ ey(7--7J] :I!$ pl{e-2e(r-rJ} (11) 
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TABLE I 

PARAMRERS IN THE TRIAL WAVEFUNCTION OF EQUATION (9) 

i I m n 

1 1 1 1 
2 1 1 2 
3 1 2 2 
4 1 1 3 
5 2 2 2 
6 1 2 3 
I 2 2 3 
8 1 3 3 

where P&c) is a polynomial of degree I- 1 in X. This is the form chosen in a recent 
series of calculations on the triton (ref. [l]). 

In each case, the nonlinear parameters 01, and y and 6 were optimised by finding 
the values which minimised the variational estimate of the energy with a single 
term wavefunction. 

In the hard core case, the coefficients of the polynomials Pi(x) were chosen so as 
to make some of the set of trial functions orthogonal (by analytic evaluation of 
the appropriate integrals). This will tend to reduce the effects of roundoff errors 
in the R.R. estimates (see ref. [2]) in individual cases, although for trial functions 
containing those terms which exhaust the triplet lmn satisfying 

I+ m + n < some positive integer 

the energy given by both the R.R. and L.S. procedure is independent of this 
orthogonalisation procedure. 

Integration Rules 

It is convenient to transform the three-body configuration space into a sum of 
regions defined by independent coordinates in which the integrand is well behaved. 

For the potential with no hard core the space is defined by 

rl < r2 + ra 
r, d rs + 5 
ra d rl -I- r2 

Here we utilize the perimetric coordinates uvw defined by 

[ :] = [-i -i -i][!z] 
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so that 

f/l dr, dr, dr3 = a jrn lw jrn du dv dw 
0 0 0 

In the case of a potential with hard core the space is specified by 

r, < rl ,< r2 + r3 
rc d r2 < r3 + rl 
r, < r3 < rl + r2 

We have used the transformation 

where 

u’ = u - rc w= -rl+r2+r3 

v’ = v - rc rj = r3 - r, 

w’ = w - r. rl = r2 - rc 

which holds for an integrand symmetric in the labels 1,2, 3. The integration in the 
transformed spaces are carried out by Gauss Laguerre or Gauss Legendre rules, 
using P points in each dimension together with any symmetry reduction possible. 
We refer to the resulting rule as containing P3 points nominally. 

For each case, Table II gives the relationship of the number of points actually 
used in the integration meshes to this nominal value. 

TABLE II 

RELATIONSHIP OF THE ACTUAL NUMBERS OF QUADRATURE POINTS EMPLOYED TO THE NOMINAL 
VALUES QUOTED ELSEWHERE 

NOMINAL 23 43 63 83 lo3 12* 14a 

No Hard Core 4 20 56 120 220 364 560 
ACTUAL 

Hard Core 10 60 182 408 770 1300 2030 

Table III and IV indicate the accuracy of the integration procedures and show 
the convergence of the matrix elements as more mesh points are employed. 
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TABLE III 

SAMPLE MATRIX ELEMENTS FOR POTENTIAL A, 
ILLUSTRATING THE ACCURACY OF THE INTEGRATION RUXEDLIRE 

Matrix 
Element NUMBER OF MESH POINTS 

23 

f-% 0.4161609454,5 

H I.1 -0.7809840578,3 

s 1.1 0.1538085937,2 

fGl,N 0.3344575157,3 

H 20.20 -0.2894197868,1 

S 20.20 0.3410537961,l 

53 g3 103 

0.4232086508,5 0.4275129195,5 0.4291690052,5 

-0.7744992250,3 -0.7744992101,3 -0.7744992100,3 

0.1538085937,2 0.1538085936,2 0.1538085936,2 

0.5605989821,4 0.1285896207,5 0.1426778729,5 

0.3544301567,1 0.7889143271,1 0.7836155643,1 

0.4016431921, -2 0.2367236821, - 1 0.2371377327, - 1 

TABLE IV 

SAMPLE MATRIX ELEMENTS FOR POTENTIAL B, 
ILLUSTRATING THE ACCURACY OF THE INTEGRATION PROCEDURE 

Matrix 
Element 

%,I 

H 1.1 
S 1.1 

H&l 

H 20.20 
s20.20 

63 

0.3247381821,7 

-0.5480665939,4 

0.9970352568,3 

0.5537564930,8 

0.8691674939,4 

0.3628785539,1 

Number of Mesh Points 

103 145 

0.3439260924,7 0.34583 15374,7 

-0.6537618829,4 -0.6663862495,4 

0.1155165390,4 0.1171820400,4 

0.5569957979,8 0.5708896360,8 

0.8787405116,4 0.9108835830,4 

0.4086498322,l 0.4879227064,1 

Results and Discussion 

Tables V and VII present the L.S. energy estimates in the two cases considered, 
for several integration mesh sizes and for various numbers of terms in the trial 
function. 
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TABLE V 

LEAST SQUARES E~IMATFS OF THE THREE BODY BINDING ENERGY USING POTENTIAL A. 
P DENOTES THE NWBER OF QUADRATURE POINTS AND N THE NLJMBER OF LINEAR PARAMETERS. 

P 
\ N 23 43 63 83 103 125 143 

1 50.776 50.355 50.355 50.355 50.355 50.355 50.355 
4 49.842 50.788 50.801 50.800 50.800 50.800 50.800 
8 50.894 50.836 50.83 1 50.830 50.830 50.830 

12 50.823 50.848 50.848 50.848 50.848 
16 51.123 50.868 50.854 50.853 50.853 
20 50.879 50.841 50.852 50.851 50.853 

TABLE VI 

RAYLEIGH-RITZ ESTIMATFS OF THE THREE BODY BINDING ENERGY USING POTENTIAL A. 

P 
\ N 25 43 63 g3 10s 125 148 

1 50.776 50.354 50.355 50.355 50.355 50.355 50.355 
4 7.291 50.802 50.809 50.810 50.810 50.810 50.810 
8 51.946 50.843 50.838 50.838 50.838 50,838 

12 3.920 51.053 50.850 50.850 50.852 50.851 
16 47.174 51.165 50.856 50,855 50.855 
20 41.934 49.626 50.208 50.656 50.859 

In each case we observe that for a given number of linear parameters N the 
estimates converge with increasing number of quadrature points P, i.e. as the 
integration procedures become more accurate. For fixed P, the estimates at first 
converge with N and then become unreliable as the number of points becomes of 
the same order as N. This is indicated also by the failure of the L.S. iteration scheme 
to converge. As expected, the onset of this breakdown is delayed as P is increased. 

With both potentials we see that the estimates converge as Nand P simultaneously 
increase i.e. diagonally down the tables. 

Thus in practice the L.S. estimates converge in the expected manner. Examining 
Tables VI and VIII which show the R.R. estimates for the two potentials we notice 
the same pattern of convergence. As P is increased for tied N the estimates 
converge due to the improved accuracy in the matrix elements, while for fixed P 
the estimates at first converge and then begin to oscillate as the effect of roundoff 
errors accumulates. 
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TABLE VII 

LEAST SQUARES ESTIMATES OF THE THREE BODY BINDING ENERGY USING POTENTIAL B. 
P DENO~ THE NUMBER OF QUADRATURE POINTS AND N THE NIJMBER OF LINEAR PARAMETERS. 

P 
\ N 43 

1 5.254 
4 8.170 
8 9.842 

12 2.756 
16 2.807 
20 2.894 
24 
28 

63 

5.497 
7.355 
7.470 
7.936 
9.470 
7.690 

83 103 

5.607 5.659 
7.502 7.606 
7.541 7.625 
7.542 7.532 
7.793 7.646 
7.565 7.694 

7.814 
7.745 

125 143 

5.680 5.687 
7.649 7.664 
7.662 7.676 
7.553 7.566 
7.644 7.651 
7.729 7.743 
7.778 7.778 
7.779 7.779 

TABLE VIII 

RAYLEIGH-RITZ ESTIMATES OF THE THREE BODY BINDING ENERGY USING POTENTIAL. B. 

\ P 43 63 8s 103 123 143 

1 5.254 5.497 5.607 5.659 5.680 5.687 
4 14.758 7.624 7.631 7.708 7.740 7.750 
8 9.684 7.774 7.750 7.771 7.781 

12 20.377 8.005 7.772 7.781 7.790 
16 8.739 7.831 7.802 7.806 
20 11.078 7.864 7.804 7.810 
24 8.012 7.817 7.814 
28 8.287 7.823 7.814 

For each potential the R.R. and L.S. estimates converge to the same value i.e. 
provided there are sufficient terms in the trial wavefunction and the integration 
mesh is sufficiently fine, the two approaches provide identical estimates. 

In a practical calculation, however, we are interested in using as few terms and 
quadrature points as possible. Figs. 1 and 2 enable us to compare the R.R. and 
L.S. estimates for various mesh sizes. 

These show clearly the breakdown in the variational estimates as the truncation 
errors in the matrix elements become larger. Taking the variational estimates on 
their own, it is easy to be misled into thinking that a lowering in the energy achieved 
by employing further terms in the wavefunction is an improvement, when in fact 
it is due to the commencement of this breakdown. 
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FJIG, 1. The dependence of various binding energy estimates on the number of terms in the 
trial function for potential A using an integration mesh of 8* points. 

Before the oscillation in the R.R. values occurs, the two estimates are in good 
agreement and we see that a large difference between them is indicative of excessive 
errors in the matrix elements. However, long after the R.R. estimate has become 
unreliable, the L.S. value not only remains reliable but continues to improve. 

In Fig. 1 a plot is also made of a corrected upper bound to the energy described 
in ref. [2] which takes explicit account of the errors in the matrix elements. This 
bound is pessimistic in that it overestimates the effect of roundoff errors. However, 
where it differs greatly from the uncorrected bound it also warns of excessive 
buildup of the errors. We may further compare the reliability of the two estimates 
by a consideration of the variance 

This quantity provides a kind of antithesis to the energy, since it is guaranteed to be 
lower for the L.S. wavefunction than for the R.R. function. However, we are 
interested in the dependence of e on N. 



464 BELL AND DELVES 

- LEAST SPUARLS 

- - -- RAVLCIGH RITZ 

> 
2s 

I \ I \ 

z -9- 
i 

P 1Z3 POINTS EXACT EIGENVALUE \ 
I \ 
I \ 
I \ \ I \ 
I 

IO - 
\ 

I \ 
! \ - 

I I I 
6’ 

I I I I I I I 

1 4 

Nuhm iiF lE& 
1L 16 18 20 

FIG. 2. The dependence of various binding energy estimates on the number of terms in the 
trial function for several mesh sizes using the potential B. 

In Fig. 3 plots of the variance derived from the R.R and L.S. estimates 
are shown. We see that the region where the R.R. procedure breaks down is evi- 
denced also by an erratic behaviour in E as a function of the number of terms 

Convergence of R.R. and L.S. vectors 

For sufficiently large N and P we have seen that the R.R. and L.S. energies both 
converge to the exact eigenvalue, Presumably then the corresponding eigenvectors 
should also converge to the same vector. Fig. 4 demonstrates that the linear param- 
eters a derived from the L.S. and R.R. approaches appear to be converging to 
the same values with simultaneous increase in N and P. 

IV. CONCLUSION 

A R.R. calculation only gives a rigorous upper bound to the energy when the 
matrix elements of H and S ale known exactly. With the approximate numerical 
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FIG. 3. The variance as a function of the number of terms in the trial function for potential A 
with 79 points. 

evaluation of these matrix elements the R.R. eigenvalue estimates may misleadingly 
drop below the exact value. The calculation of the L.S. estimate in addition to the 
R.R. value provides a means of assessing when the effects of truncation errors is 
appreciable and moreover where the effects are important the L.S. estimate will 
continue to provide a good estimate. We pay for this relative insensitivity to the 
integration mesh by having to provide the matrix H2 where the R.R. method 
requires only H and S. However, this matrix is in this context rather cheap to 
provide, since it is constructed from a knowledge of H$ at the points in the mesh, 
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FIG. 4. Ratio of the linear parameters provided by the Rayleigh-Ritz approach to those 
given by the least squares procedure shown for various numbers of mesh points and linear 
parameters for potential A. 

and this function serves also to evaluate the matrix of H. Moreover, if we intend to 
carry out also lower bound calculations, we must anyway provide Hz for these 
[ref. 11. 

The results we obtain suggest strongly that the L.S. method forms at least a 
useful adjunct to the R.R. method whenever the matrices are computed numerically, 
and can give an apparently reliable guide to the numerical accuracy of the energy 
estimates. A similar conclusion is reached also in application of the method to 
atomic calculations (ref. [6]). 
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APPENDIX A 

ON THE CONVERGENCE PROPERTIES OF THE DISCRETE LEAST SQUARES METHOD 

In the body of this paper we demonstrate that the discrete least squares method 
converges sufficiently well in the examples considered to be of some practical use. 
The same conclusion is reached in the field of atomic problems in ref. [6]. These 
calculations use a specific choice of points, and of weights; in this appendix we 
investigate a simple one-dimensional case of the least squares method, and show 
that convergence can be expected for a wide range of points and weights. We also 
study the way in which convergence is achieved as both n the number of terms in 
the trial function, and N the number of points in the mesh, are increased. 

The Schrijdinger equation for a Hamiltonian H defined on a space R is 

(H-E)+=0 #ER 41) 

The continuous least squares procedure consists in minimising the functional 

A+> = (42 4) a 0 A(2) 

where w is an Hermitian positive definite operator over R and I$ is the vector 

+=(H--ol)lCIz- A(3) 

In A(3) 01, & are the trial energy and eigenvector. Equality in A(2) implies that 4 
is the null vector, and hence that I,& is an eigenvector of H for the eigenvalue CL 
However, this form has the well known disadvantage that the inner products which 
it involves are difficult to evaluate. 

It is possible to simplify the inner products as much as we please by defining the 
functional, not over R but over some simpler subspace Sin which the inner products 
are more conveniently evaluated. In particular, if we choose S to be a discrete point 
set {P> we generate the discrete least squares method 

EP 2 = min 1 Vrp)l(H - 4 $drp)12 A(4) 
P 

subject to suitable normalizing conditions on & to keep it finite. This is the method 
studied in this paper. Equation A(4) is also the form taken by A(2) if the integrals 
are carried out numerically, as is done by Conroy [4], The solutions of A(4) satisfy 

Ep2 = 0 W - 4 &+P) = 0 rp e V? A(5) 

and we would hope that, in the limit as the point set {P} was extended in a suitable 
way, A(5) would imply A(1). 

In this appendix we consider the simplest case of A(1). We take R to be a finite 
one-dimensional region, the trial function & to be a linear function with IZ para- 
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meters, and limit the range of the parameter (Y to a small enough region that the 
minimum A(4) is unique. Under these conditions we give two convergence 
theorems. The first states that, for fixed n, the solution of A(4) tends to A(2), as 
the number of points N increases without limit. The second considers the case that 
n and N increase together, and gives conditions under which convergence in (P} 
implies convergence in R. These theorems are given precise form in the next section. 

2. CONVERGENCE THEOREMS FOR FIXED n 

We consider the space R of integrable functions of one variable defined on a 
finite interval which we take to be 0 < x < 1; and the trial function 

The functions g, are assumed linearly independent, and continuous on [0, 11. 
Equation A(2) leads to the L, deviation Ed : 

where W(X) is a positive definite function on R. We shall assume without essential 
loss of generality that Hand & are real, and hence the ai can be chosen real. 

We also define point sets Pm containing m points as follows. Let 

P = {x+, 1 i = 1, 2,...} A@) 

be dense in [0, 11, and take 

Pm = {xi / xi e P; i = l,..., m} 

For each xi in Pm we define the positive number 6,(xi) 

A(9) 

A(lO) 

which is the distance from xi to its immediate left neighbour. For each set Pm , 
equation A(4) defines a least squares error relative to the weight function 
w4 &n(x) : 

em2 = tl Wxi) 4nWlW - 4 h+i)12 AU 1) 

The reason for this choice of weight function will become clear below. Now, the 
the weighted L2(Pm) approximation to & consists in minimizing cz2(em2) with 
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respect to the parameters ai , 01. The minima depend on the domain of ai, OL over 
which the minimum is sought. We do not restrict the ai , but make the following 
restriction on (11: 

The range of 01 is finite and is such that one and 
only one minimum exists for ~~~ and all E,~. NW 

This restriction is only a weak one in practice; it implies that we take the minimum 
m considered to be large enough that a single eigenvalue can be localized within 
the finite range of variation of 01. We now define the best trial functions 

M%n), &(A*), A = ia1 ,*-*, an 7 4 a0 = 1 

which minimize E,~, c22 subject to the normalizing condition a0 = 1. In accordance 
with A(12) these minima are unique. We then have 

THEOREM 1. If 

Then 

lim max 6,(x) = 0. m--m XEP, 

Proof. This theorem is only a slight modScation of a theorem concerning the 
point set approximation of a given functionf(x) by a linear approximating function, 
see e.g., ref [8]. If we define 

n 
L(Av x) = C ui(a - HI gdX) + %0(x> 

i=l 

A = {a, ,...) a,} 
then for a fixed the problem reduces to that considered by Rice, who proves the 
following essential steps (for all m) 

(i) the minimum is unique 
(ii) the parameters (ai} are uniformly bounded in m. 

Condition A(12) ensures that (i) and (ii) remain true also when 01 is varied and hence 
the theorem follows. 

Discussion 

This theorem, apart from guaranteeing a sensible answer as the number of 
points is increased for a fixed length of trial function, also makes precise the obser- 
vation that one can weight a given region of space heavily in either of two ways: by 
clustering the points closely, or by increasing the weight function W(x) in the region. 

581/3/4-2 
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To illustrate this, let us choose the spacing in a regular way: 

6,(x,) = U(Xi) &a A(14) 
where a(x) is independent of m and 6, --t 0 as m + co. Further, let us write 

49 W4 = Q(x). -405) 
Then A(7) and A(1 1) become 

E2 
2= I l Wx)lW - 4 #T I2 dx 

0 
A(16a) 

A(16b) 

and we have shown that, for large m, the solution of A( 16b) tends to that of A( 16a). 
The theorem remains valid for trial functions containing nonlinear parameters, 

provided that we assume the essential requirements: the minimum with respect to 
all parameters of l m2 is unique for any m, and the parameters at the minimum 
form a bounded sequence in m. 

3. CONVERGENCE AS n -+ 00 

The conditions of Theorem 1 do not correspond to those used in a practical 
calculation. The calculator is usually more interested in increasing the number of 
terms n in the trial function as far as he can, keeping as few points m as he dare to 
make the resulting estimate 01 “representative” of the trial function, in some sense. 
Specifically, we would like to know how to vary m with iz so that convergence to the 
exact solution over R is assured. The following theorem assumes that convergence 
over P to some accuracy is attained, and relates this to convergence over R. 

DEFINITION. With the trial function (A6) we defme: 

M4 = w - 4 &5(x) 

w = g M4 

6 = nl$X S,(x) 

cj = nlg [i(X) 

%a2 = f W~,)IW - 4 $T I2 
i=O 

u = $p [W(X~)]~‘~ m 

A(17a) 

A(17b) 

A(17c) 

A(17d) 

A(17e) 

A(17f) 
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In equation A(17c), 6&J is the spacing at point xi defined by A(lO). 
We then use the mean value theorem to obtain the following estimate of 

(H - a) #z(x) at a point x not in P, : 

IW - 4 &-(xl = IW - 4 $MXi) + (Xi - Xi+1> g NH - 4 &-(&)I 

Xi < fi d Xi+1 
NW 

~I(~-~)~~(xi)l+6~laiICi 
i=O 

This estimate then leads to the following simple theorems. 

THEOREM 2. If there exist constants D, N such that for suficiently large n 

j a, I C, < DN-* N>l A(19 

andifs- as m-+co 

then convergence in P implies convergence in R. 

Proof. For then the series in A(18) converges, and the second term tends 
to zero. 

THEOREM 3. If the point set {P} is chosen suficiently large for each n so that 

II&C 61 UC 1 Ci < E n-(l+‘) where E isjinite and E > 0 NW 

then convergence in P implies convergence in R. 

Proof. For then we have 

Discussion 

Usually Theorem 2 will not apply; the Ci will rise sufficiently rapidly that I ai I C, 
is unbounded, and the maximum in A(20) is attained at the last term i = m. 
Equation A(20) then gives a simple relation for the minimum number of points as 
a function of m required to ensure convergence. This relation, and that of Theorem 
2, involves the expansion parameters oi which are not known before the calculation 
starts. The a priori estimation of a, for large n has been considered by Schwartz 
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[7], and in another context by Lighthill [8]; they are always available afterwards 
to check the convergence of an apparently successful calculation. 

Theorems 2 and 3 can also be used to check convergence in any subset R’ of R; 
we merely replace R by R’ in the statement of the theorems, and in the definition 
A(17d) of the Ci . In this way we can avoid regions of R where one or more of the 
hi or Ii becomes singular, and isolate these singularities to treat separately their 
contribution to the L, error l z2. If the singularities are weak enough, cz2 will still 
exist and tend to zero even though the estimate A(18) taken over the whole space 
R diverges. 
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